
www.manaraa.com

Semi-automatic Composition of Web Services

using Semantic Descriptions

Evren Sirin1, James Hendler2, and Bijan Parsia2

1 University of Maryland, Computer Science Department,
College Park MD 20742, USA

evren@cs.umd.edu
2 University of Maryland, MIND Lab, 8400 Baltimore Ave,

College Park MD 20740, USA
hendler@cs.umd.edu, bparsia@isr.umd.edu

Abstract. As web services become more prevalent, tools will be needed
to help users find, filter and integrate these services. Composing existing
services to obtain new functionality will prove to be essential for both
business-to-business and business-to-consumer applications. We have de-
veloped a prototype that guides a user in the dynamic composition of
web services. Our semi-automatic process includes presenting matching
services to the user at each step of a composition, filtering the possi-
bilities by using semantic descriptions of the services. The generated
composition is then directly executable through the WSDL grounding of
the services. We tested our system by generating semantic descriptions
for some of the common services available on the web such as translator,
dictionary and map services. We also applied our approach to a proto-
type sensor network environment where each sensor provides its data as
a network service.

1 Introduction

Web services are designed to provide interoperability between diverse applica-
tions. The platform and language independent interfaces of the web services allow
the easy integration of heterogenous systems. Web languages such as Universal
Description, Discovery, and Integration (UDDI) [13], Web Services Description
Language (WSDL) [4] and Simple Object Access Protocol (SOAP) [14] define
standards for service discovery, description and messaging protocols.

However, these web service standards do not deal with the dynamic compo-
sition of existing services. The new industry initiatives to address this issue such
as Business Process Execution Language for Web Services (BPEL4WS) [5] focus
on representing compositions where flow of the process and the bindings between
services are known a priori. A more challenging problem is to compose services
dynamically, on demand [1]. In particular, when a functionality that cannot be
realized by the existing services is required, the existing services can combined
together to fulfill the request.

The dynamic composition of services requires the location of services based
on their capabilities and the recognition of those services that can be matched



www.manaraa.com

together to create a composition as described in [9]. The full automation of this
process is still the object of ongoing research activity, but accomplishing this
goal with a human controller as the decision mechanism can be achieved. The
main problem for this goal is the gap between the concepts people use and the
data computers interpret. We can overcome this barrier using Semantic Web
technologies.

The Semantic Web [2] is an extension of the current web in which information
is given well-defined meaning, better enabling computers and people to work in
cooperation. This is realized by marking up Web content, its properties, and
its relations, in a reasonably expressive markup language with a well-defined
semantics. The Web Ontology Language (OWL) [7] is a forthcoming W3C spec-
ification for such a language which will supersede the earlier DARPA Agent
Markup Language (DAML+OIL) [8]. OWL is an extension to XML and the
Resource Description Framework (RDF) [3] enabling the creation of ontologies
for any domain and the instantiation of these ontologies in the description of
resources. The DAML-services language (DAML-S) [6] is a set of language fea-
tures arranged in these ontologies to establish a framework within which the web
services may be described in this semantic web context. Our work uses OWL and
DAML-S to provide the semantics needed for service filtering and composition.

The remainder of this paper is organized as follows: In 2 we explain the ex-
amples of web service composition problems we address and then in section 3
we describe how semantic service descriptions are used in these examples. Sec-
tion 4 describes the details of our prototype and the algorithms used in service
composition. Section 5 talks about related work and we conclude in Section 6
with a discussion of possible enhancements to the system.

2 Motivating Examples

Our work focuses on the composition of web services that have been previously
annotated with semantics and discovered by a system. As an example of compo-
sition, suppose there are two web services, an on-line language translator and a
dictionary service, where the first one translates text between several language
pairs and the second one returns the meanings of English words. If a user needs
a FrenchDictionary service, neither of these can satisfy the requirement. How-
ever, together they can – the input can be translated from French to English,
fed through the English Dictionary, and then translated back to French. The
dynamic composition of such services is difficult using just the WSDL descrip-
tions, since each description would designate strings as input and output, rather
than the necessary concept for combining them – that is, some of these input
strings must be the name of languages, others must be the strings representing
user inputs and the translator’s outputs. To provide the semantic concepts like
language or French, we can use the ontologies provided by the Semantic Web.

Service composition can also be used in linking Web (and Semantic Web)
concepts to services provided in other network-based environments. One example
is the sensor network environment which includes two types of services; basic



www.manaraa.com

sensor services and sensor processing services. Each sensor is related to one web
service which returns the sensor data as the output. Sensor processing services
combine the data coming from different sensors in some way and produce a new
output. These sensors have properties that describe their capabilities, such as
sensitivity, range, etc., as well as some non-functional attributes, such as name,
location, etc. These attributes, taken together tell whether the sensor’s service
is relevant for some specific task. An example task in this environment would
involve retrieving data from several sensors and using relevant fusion services to
process them via SOAP calls. As an example, the data from several acoustic and
infrared sensors can be combined together and after applying filters and special
functions, this data may be used to identify the objects in the environment. In
this setting, we need to describe the services that are available for combining
sensors and the attributes of the sensors that are relevant to those services. More
importantly, the user needs a flexible mechanism for filtering sensor services
and combining only those that can realistically be fused (for example the set
representing a particular geographic area shown as a latitude/longitude box).

3 Creating Semantic Service Descriptions

DAML-S partitions a semantic description of a web service into three compo-
nents: the service profile, process model and grounding. The ServiceProfile de-
scribes what the service does by specifying the input and output types, precon-
ditions and effects. The Process Model describes how the service works; each
service is either an AtomicProcess that is executed directly or a CompositePro-
cess that is a combination of other subprocesses. The Grounding contains the
details of how an agent can access a service by specifying a communications
protocol, parameters to be used in the protocol and the serialization techniques
to be employed for the communication. The similarities between DAML-S and
other technologies may be expressed as follows: The profile description has a
similar functionality of the yellow pages in UDDI, the process model is similar
to the business process model in BPEL4WS and grounding is just a mapping
from DAML-S to WSDL. The main contribution of DAML-S is the ability to
express the entities using the concepts defined in Semantic Web ontologies which
provide expressive constructs that are suitable for the automatic discovery and
composition of services.

DAML-S service descriptions are made to link to other ontologies that de-
scribe particular service types and their features. For example, an ontology can
be written in OWL that is specialized for the description of sensors. This on-
tology contains a top level class Sensor to define the sensor concept. Sensor

has subclasses such as AcousticSensor and InfraRedSensor. In the semantics
of OWL, subclasses inherit the properties of superclass and may extend these
attributes with additional ones.

The profile description of DAML-S services has a hierarchy as well. For ex-
ample, the service provided by an AcousticSensor constitutes a subclass of a
Sensor service. A profile hierarchy ontology describes this relationship and this



www.manaraa.com

information can be used for filtering the services that can be composed together.
Each service type has non-functional attributes specific to that type. These at-
tributes are defined via the extensible service parameter mechanism in DAML-S
and are primarily used to relate the service to the its associated sensor.

4 Service Composition Architecture

We have developed a service composition prototype that has two basic compo-
nents: a composer and an inference engine. The inference engine stores the infor-
mation about known services in its Knowledge Base (KB) and has the capability
to find matching services. The composer is the user interface that handles the
communication between the human operator and the engine.

The inference engine is an OWL reasoner built on Prolog. Ontological infor-
mation written in DAML is converted to RDF triples and loaded to the KB.
The engine has built-in axioms for OWL inferencing rules. These axioms are
applied to the facts in the KB to find all relevant entailments such as the class
inheritance relation between two classes that may be not be directly encoded in
the subclass relationships.

The composer lets the user create a workflow of services by presenting the
available choices at each step. The user starts the composition process by select-
ing one of the services registered to the engine. A query is sent to the KB to
to retrieve the information about the inputs of the service, and for each of the
inputs, a new query is run to get the list of the possible services that can supply
the appropriate data for this input. The composer also shows the different ser-
vice classes available in the system and filters the results based on constraints
which the user may specify on the attributes of a service. These functionalities
are explained in detail in the following subsections.

4.1 Matching on Functional Properties

The composer only presents as options for composition those services whose out-
put could be fed to a selected service as an input. The matching of two services is
done using the information in the service profiles. Each service profile describes
its inputs, outputs and the range of these parameters. The parameter descrip-
tions in the profile allow defining two different types of matches between services,
an exact match and a generic match. An exact match is defined between two
parameters which are restricted to the same OWL class in their ServiceProfile
descriptions. The services that supply an output of an exact match are more
likely to be preferred in the composition and these services are displayed at the
top of the matching services list.

The match between the services whose output type is a subclass of the other
service’s input type is called a generic match. When the output of a service is
subsumed by the input, the output type can be viewed as a specialized version
of the input type and these services can still be chained together. The generic
matches are put at the end of the list since they are less likely to be chosen for



www.manaraa.com

the composition. The inference engine also orders the generic matches such that
the priority of the matches are lowered when the distance between the two types
in the ontology tree increases.

4.2 Filtering on Non-Functional Attributes

The number of services displayed in the list as possible matches can be extremely
high in many cases. For example, a power grid or telephone network might
have many thousands of sensors each providing several services. This will make
it infeasible for someone to scroll down a list and choose one of the services
simply by name. Further even if the number of services is low, the service names
themselves may not be mnemonic enough to let a user know what they do, or
the short text descriptions from UDDI or other services descriptions would not
be enough to fully describe the services. When the name of the service does not
help to distinguish the services, other non-functional attributes of the service
such as location will be useful to determine the most relevant service for the
current task. Thus, a sensor description, linked to a particular service, can be
queried as to the sensors’ locations, type, deployment date, sensitivity, etc.

In our prototype, filtering is provided based on the profile descriptions of
the services. The profile hierarchies mentioned in section refdescriptions-section
defines a classification which is used at the first level of filtering. Each profile
subclass inherits some attributes from its container class and extends them with
other attributes that apply to its category. These attributes are presented to the
user and the constraints entered for these properties constitutes the second level
of filtering.

Consider a example in the sensor network where we want to select a service
whose input will be retrieved from a sensor service. With no other restriction, the
system will present as many possible matches as the number of sensor services
in the environment. If the user chooses to filter the results to the services of type
AcousticSensorService, that decreases the number of matches significantly. The
composer then queries the inference engine about the non-functional parameters
of the selected service type. Based on the answer returned from the engine,
the composer creates a GUI panel in which the user can enter constraints for
the properties of the services as shown in Figure 1. The user’s constraints are
translated to Prolog queries and sent to the inference engine. The engine simply
applies the new query to the previous result set and removes from consideration
those services that do not satisfy the current constraints.

4.3 Generating Composed Services

Each composition generated by the user using the existing prototype can itself be
realized as a DAML-S CompositeProcess, thus allowing it also to be advertised,
discovered, and composed with other services. In the composer, we generate
exactly such a CompositeProcess description, and also create the corresponding
ServiceProfile with user added non-functional properties. Such a description is
immediately available to the system as a named service which can be filtered



www.manaraa.com

Fig. 1. Filtering is used to see only omnidirectional acoustic sensors that are located
at a latitude between 30-40 and a longitude between 65-70. It is seen that only two of
55 services satisfy these constraints

and composed in the normal way. In this way, the user can quickly build up a set
of complex compositions in a piece-meal fashion as the tasks at hand demand.

4.4 Execution of Composed Services

The current implementation of the system executes the composition by invoking
each individual service and passing the data between the services according to the
flow constructed by the user. This method is primarily dictated by the DAML-S
and WSDL specification which both describe the web services as an interaction
of either a request/response or as a notification messaging between two parties.
As a consequence of this design, the client program serves as the central control
authority that handles all the RPC calls to invoke individual services.

However, this centralized coordination suffers from scalability and availabil-
ity problems [12]. It also can require passing redundant messages between the
coordinator and other parties causing a quite inefficient use of the bandwidth
which is a more severe problem when you consider the output of a such as
the sensor readings of an acoustic sensor that may provide large wav files. For
the efficient execution of a dynamically created composite process, we need a
special framework where each node abides by a set of system rules to conduct
the execution process by directly passing its result to the next service. In the
prototype, we address this by adding the functionality of generating an XML
workflow description that can be passed to the non-centalized system in SOAP



www.manaraa.com

(and forwarded as necessary) . As the standards in this area of web services are
settled, it will be easy to adapt the system to the new interface.

5 Related Work

There are several different industry efforts to create a standards for web ser-
vice composition tasks, the Business Process Execution Language for Web Ser-
vices (BPEL4WS) [5] being one of the most important ones. BPEL4WS super-
sedes IBM’s Web Services Flow Language (WSFL) and Microsoft’s XLANG.
BPEL4WS provides a language for the formal specification of business processes
and business interaction protocols. It extends the interaction model of WSDL
to define a process that provides and consumes multiple Web Service interfaces.
Such a process can be thought of as composing a set of Web Services from other
Web Services. However, BPEL4WS supports static binding of services in the
composition, rather than discovering the possibilities on demand as implemented
in the prototype described in this paper.

McIlarith and Son [10] proposed an approach to building agent technology
based on the notion of generic procedures and customizing user constraints. They
argue that an augmented version of the logic programming language Golog pro-
vides a natural formalism for programming Web services. These contributions
are realized in their development of the ConGolog interpreter which communi-
cates with Web services via the Open Agent Architecture (OAA) but the service
and procedure ontologies are written in first-order logic. Our system more di-
rectly supports the use of existing web services by being able to ground directly
in the existing WSDL or via a workflow expressed in a SOAP call, rather than
creating a separate execution system for semantically described services.

The DAML-S Matchmaker [11] is a system to augment current UDDI ar-
chitecture with semantic service descriptions. The matchmaker aims to improve
the discovery process by allowing location of services based on their capabilities
which in return will support the composition task. The basic idea used in the
matchmaker is making use of the subsumption relation between the classes to
find flexible matchings beyond the capabilities of UDDI. Our system would be
able to incorporate matchmaker functionality if it were available online (perhaps
as a service itself), but currently assumes the service definitions are available at
runtime. That is, we use filtering on a set of previously discovered services, rather
than dynamic matchmaking and loading. This should be more scalable, as it will
allow service “crawlers” to find semantic service descriptions, and support all us-
able compositions among the services found.

6 Conclusion and Future Work

In this work, we have shown how to use semantic descriptions to aid in the
composition of web services. We have developed a prototype system and shown
that it can compose the actual web services deployed on the internet as well
as providing filtering capabilities where a large number of similar services may



www.manaraa.com

be available. Our prototype is the first system to directly combine the DAML-S
semantic service descriptions with actual invocations of the WSDL descriptions
allowing us to execute the composed services on the Web.

As a future work, we are working on the incorporation of planning technology
in the inference engine that would result in further automation of the system.
We are also investigating the possibility of learning from past user activity. Gen-
erating richer ontologies with more specific descriptions will also improve the
performance of the engine. As ontologies become widely used on the Semantic
Web, we expect to find an increasing number of cross references between related
concepts in different ontologies (and OWL supports such crossreferencing di-
rectly) and thus the impact of semantic information will become more apparent.

References

1. B. Benatallah, M. Dumas, M.-C. Fauvet, and F. Rabhi. Towards Patterns of Web
Services Composition. In S. Gorlatch and F. Rabhi, editors, Patterns and Skeletons
for Parallel and Distributed Computing. Springer Verlag, UK, Nov 2002.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34–43, May 2001.

3. D. Brickley and R. Guha. Resource Description Framework (RDF) Model
and Syntax Specification. W3C Recommendation submitted 22 February 1999
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/. (current May 2002).

4. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1, 2001. http://www.w3.org/TR/2001/NOTE-
wsdl-20010315.

5. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Language for Web Services, Version 1.0, July
2001. http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

6. DAML Services Coalition. DAML-: Web Service Description for the Semantic Web.
In The First International Semantic Web Conference (ISWC), June 2002.

7. M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. Web Ontology Lan-
guage (OWL) Reference Version 1.0. W3C Working Draft 12 November 2002
http://www.w3.org/TR/2002/WD-owl-ref-20021112/.

8. I. Horrocks, F. van Harmelen, P. Patel-Schneider, T. Berners-Lee, D. Brick-
ley, D. Connoly, M. Dean, S. Decker, D. Fensel, P. Hayes, J. Heflin,
J. Hendler, O. Lassila, D. McGuinness, and L. A. Stein. DAML+OIL, 2001.
http://www.daml.org/2001/03/daml+oil-index.html.

9. Z. M. Mao, E. A. Brewer, and R. H. Katz. Fault-tolerant, Scalable, Wide-Area
Internet Service Composition. U.C. Berkeley TR UCB//CSD-01-1129, Jan 2001.

10. S. McIlraith and T. Son. Adapting Golog for Composition of Semantic Web Ser-
vices. In Conference on Knowledge Representation and Reasoning, April 2002.

11. M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic Matching of Web
Services Capabilities. In The First International Semantic Web Conference, 2002.

12. Q. Z. Sheng, B. Benatallah, M. Dumas, and E. O.-Y. Mak. SELF-SERV: A Plat-
form for Rapid Composition of Web Services in a Peer-to-Peer Environment. In
Demo Session of the 28th Intl. Conf. on Very Large Databases, Sept 2002.

13. UDDI. The UDDI technical white paper, 2000. http://www.uddi.org/.



www.manaraa.com

14. W3C. SOAP 1.2 Working draft, 2001. http://www.w3c.org/TR/2001/WD-soap12-
part0-20011217/.


